Quinone-Pyrrole Dyad Based Polymers for Organic Batteries From Design to Application

نویسنده

  • HAO HUANG
چکیده

Huang, H. 2017. Quinone-Pyrrole Dyad Based Polymers for Organic Batteries. From Design to Application. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1483. 73 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9832-0. Organic electrode materials are finding increasing use in energy storage devices due to their attractive properties that allow building of flexible and low weight devices in an environmentally friendlier manner than traditional alternatives. Among these organic electrode materials, conducting redox polymers (CRPs), consisting of conducing polymer (CP) with covalently attached redox active pendant groups (PG), have attracted our interests. This is due to the advantageous synergy between CP and PG, e.g. electronic conductivity, high stability and large charge storage capacity. In this thesis polypyrrole has been selected as CP and quinones as PGs. A series of quinone-pyrrole dyad polymers has been synthesized with a variety of quinone substituents, demonstrating the adjustability of quinone formal potentials by choice of substituents. Importantly, in this series we show that the CP-PG redox match, i.e. that the formal potential of the PG is within the conducting region of the CP, is a requirement for fast charge transfer from the electrode to the PGs. Moreover, a series of quinone-pyrrole dyad polymers with various linkers was synthesized, showing that the choice of linker has a pronounced impact on the interactions between the PG and CP. In addition, the temperature dependence of conductance during doping of the polymers reveals the charge transport mechanism. To summarize, the adjustability of the quinone formal potential as well as the fast charge transport in the bulk material ensures the applicability of the CRPs as electrode materials in organic batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation

Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...

متن کامل

Carbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation

Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...

متن کامل

Environmentally benign batteries based on organic radical polymers*

A radical polymer is an aliphatic organic polymer bearing densely populated unpaired electrons in the pendant robust radical groups per repeating unit. These radicals’ unpaired electrons are characterized by very fast electron-transfer reactivity, allowing reversible charging as the electrode-active materials for secondary batteries. Organic-based radical batteries have several advantages over ...

متن کامل

Investigations on Optoelectronic Properties of New low Gap Compounds Based on Pyrrole as Solar Cells Materials

In this paper theoretical study by using DFT method on three conjugated compound based on 2-styryl-5-phenylazo-pyrrole is reported. These dyes contain one carboxy, two carboxy and one sulfonic acid anchoring groups, the aim is to investigate their effects on the electronic structure. The theoretical knowledge of the HOMO and LUMO energy levels of the components is cannot be ignored in investiga...

متن کامل

High‐Performance Organic Lithium Batteries with an Ether‐Based Electrolyte and 9,10‐Anthraquinone (AQ)/CMK‐3 Cathode

Organic carbonyl electrode materials of lithium batteries have shown multifunctional molecule design and high capacity, but have the problems of poor cycling and low rate performance due to their high solubility in traditional carbonate-based electrolytes and low conductivity. High-performance organic lithium batteries with modified ether-based electrolyte (2 m LiN(CF3SO2)2 in 1,3-dioxolane/dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017